organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Peter G. Jones* and Virginia Lozano

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study T = 133 KMean $\sigma(C-C) = 0.004 \text{ Å}$ R factor = 0.020 wR factor = 0.052 Data-to-parameter ratio = 22.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

A second polymorph of 3,5-dibromopyridinium bromide

All atoms of the title compound, $C_5H_4Br_2N^+\cdot Br^-$, lie in a crystallographic mirror plane. The packing within the plane is determined by hydrogen bonds $N^+-H^{\cdot}\cdot\cdot Br^-$ and $C-H^{\cdot}\cdot\cdot Br^-$, and by $Br^{\cdot}\cdot\cdot Br$ contacts, but differs from that of the previous polymorph [Freytag & Jones (2001). *Z. Naturforsch. Teil B*, **56**, 889–869], which also lay completely in mirror planes.

Comment

We are interested in secondary bonding contacts (classical and 'weak' hydrogen bonds, halogen-halogen contacts) in structures of halopyridinium halides (see Freytag & Jones, 2001, and references therein). In that publication we had already reported the synthesis and structure of the compound 3,5-dibromopyridinium bromide, (I), which crystallized from acetonitrile/methanol/diethyl ether in space group $P4_2/mnm$. We have now by chance determined the structure of a second form of the same compound, crystallized from dichloromethane/diethyl ether.

The asymmetric unit, which lies completely in the crystallographic mirror plane y = 0, is shown in Fig. 1. Bond lengths and angles may be regarded as normal, in particular the widened bond angle at the protonated N atom.

The packing within one layer is presented in Fig. 2. A classical $N^+ - H \cdots Br^-$ hydrogen bond is observed, as are two 'weak' hydrogen bonds of the form $C - H \cdots Br^-$ (Table 2). Only the shorter of these latter two interactions is shown explicitly in Fig. 2; it has a normalized $H \cdots Br$ distance of only 2.58 Å.

There are also several bromine-bromine contacts. The shortest of these, $Br1\cdots Br3(x, y, z-1) = 3.4752$ (5) and $Br2\cdots Br3(-x, -y, 1-z) = 3.5117$ (5) Å, involve the anion Br3 and are approximately linear at the central bromine [C- $Br\cdots Br = 158.35$ (9) and 168.36 (9)°]. Such contacts are thought to be associated with a positive region of charge in the extension of the C-Br vector beyond Br. Two further $Br \cdots Br$ contacts are longer than the double van der Waals radius of 3.7 Å (Bondi, 1964), but may, nevertheless, be regarded as structurally significant; $Br1\cdots Br2(-x, -y, -z) = 3.9011$ (5) Å and $Br1\cdots Br1(1-x, -y, -z) = 3.8311$ (7) Å. The latter, with C-Br $\cdots Br$ angles equal by symmetry at 119.39 (9)°, is a

Received 4 April 2003 Accepted 7 April 2003 Online 16 April 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

The formula unit of the title compound in the crystal. Ellipsoids are drawn at the 50% probability level and H-atom radii are arbitrary.

Figure 2

Packing diagram of one layer of the title compound (at $y = \frac{1}{2}$), projected along the b axis. Secondary interactions are indicated by dashed lines (thick, classical hydrogen bonds and short Br...Br; thin, 'weak' hydrogen bonds and long $Br \cdots Br$).

typical 'type I' interaction as classified by Pedireddi et al. (1994); in contrast to type II interactions (one 90° and one 180° angle), these are not thought to represent significant electrostatic interactions, but nevertheless are observed so frequently that some stabilizing effect might be presumed. The former has angles of 101.84(9) and $136.03(9)^{\circ}$ and lies between types I and II.

The packing of the previous modification, also involving layers in crystallographic mirror planes, differed from the pattern described here in one important respect; the higher symmetry of the layers (4/mmm), in which the N-H bonds of neighbouring rings are exactly antiparallel and 'share' two bromides via three-centre hydrogen bonds, thus forming units $N^+-H(\cdots Br^-\cdots)_2H-N^+$. In Fig. 2, the formal conversion of the lower to the higher symmetry form can be seen in terms of the $R_4^2(10)$ ring centred at x = 1, $z = \frac{1}{2}$; the pyridine rings to the

upper right and lower left of the cell edge should both be rotated anticlockwise.

The distance between the layers is b/2 = 3.419 Å, cf. 3.442 Å in the previous modification; however, the latter has a significantly higher density, 2.631 versus 2.553 Mg m⁻³, suggesting more efficient packing in its layers. One surmises that the energy balance between the two forms would be very delicate.

Experimental

During a study of tribromoacetates, small crystals of the title compound were obtained on attempting to crystallize 3,5-dibromopyridinium tribromoacetate from dichloromethane/diethyl ether. Presumably these arose from small quantities of bromine or bromide as a decomposition product.

Crystal data

$C_{5}H_{4}Br_{2}N^{+}\cdot Br^{-}$ $M_{r} = 317.82$ Monoclinic, C2/m a = 11.6270 (8) Å b = 6.8372 (4) Å c = 10.4344 (6) Å $\beta = 94.574$ (4)° V = 826.85 (9) Å ³	$D_x = 2.553 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation Cell parameters from 4877 reflections $\theta = 3.5-30.5^{\circ}$ $\mu = 14.55 \text{ mm}^{-1}$ T = 133 (2) K Prism, colourless	
Z = 4	$0.25 \times 0.13 \times 0.08 \text{ mm}$	
Data collection		
Bruker SMART 1000 CCD diffractometer ω and φ scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1998) $T_{\min} = 0.253, T_{\max} = 0.462$ 7962 measured reflections	1308 independent reflections 1138 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 30.0^{\circ}$ $h = -16 \rightarrow 16$ $k = -9 \rightarrow 9$ $l = -14 \rightarrow 14$	
Refinement		
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.020$ $wR(F^2) = 0.052$ S = 1.06 1308 reflections 58 parameters	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0338P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.78 \text{ e} \text{ Å}^{-3}$	

Table 1

Selected geometric parameters ($^{\circ}$).

C6-N1-C2	124.4 (3)	N1-C6-C5	119.1 (3)
N1-C2-C3	117.7 (3)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H01···Br3	0.912 (19)	2.29 (2)	3.140 (2)	156 (4)
$C6-H6\cdots Br2^{i}$	0.95	3.08	4.006 (3)	166
C2−H2···Br3 ⁱⁱ	0.95	2.71	3.641 (3)	168

Symmetry codes: (i) -x, -y, 1-z; (ii) 1-x, -y, 1-z.

The acidic H atom was refined freely but with an N-H bond length restraint. Other H atoms were included using a riding model, with fixed C-H bond lengths of 0.95 Å. $U_{iso}(H)$ values were fixed at 1.2 times U_{eq} of the parent atom.

organic papers

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL*97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. VL was supported by the Erasmus scheme. We thank Mr A. Weinkauf for technical assistance.

References

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
- Freytag, M. & Jones, P. G. (2001). Z. Naturforsch. Teil B, **56**, 889–869. Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju,
- G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.