Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones* and Virginia Lozano

Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail: p.jones@tu-bs.de

Key indicators

Single-crystal X-ray study
$T=133 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.020$
$w R$ factor $=0.052$
Data-to-parameter ratio $=22.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

A second polymorph of 3,5-dibromopyridinium bromide

All atoms of the title compound, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$, lie in a crystallographic mirror plane. The packing within the plane is determined by hydrogen bonds $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Br}^{-}$and $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{Br}^{-}$, and by $\mathrm{Br} \cdots \mathrm{Br}$ contacts, but differs from that of the previous polymorph [Freytag \& Jones (2001). Z. Naturforsch. Teil B, 56, 889-869], which also lay completely in mirror planes.

Comment

We are interested in secondary bonding contacts (classical and 'weak' hydrogen bonds, halogen-halogen contacts) in structures of halopyridinium halides (see Freytag \& Jones, 2001, and references therein). In that publication we had already reported the synthesis and structure of the compound 3,5dibromopyridinium bromide, (I), which crystallized from acetonitrile/methanol/diethyl ether in space group $P 4_{2} / \mathrm{mnm}$. We have now by chance determined the structure of a second form of the same compound, crystallized from dichloromethane/diethyl ether.

(I)

The asymmetric unit, which lies completely in the crystallographic mirror plane $y=0$, is shown in Fig. 1. Bond lengths and angles may be regarded as normal, in particular the widened bond angle at the protonated N atom.

The packing within one layer is presented in Fig. 2. A classical $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{Br}^{-}$hydrogen bond is observed, as are two 'weak' hydrogen bonds of the form $\mathrm{C}-\mathrm{H} \cdots \mathrm{Br}^{-}$(Table 2). Only the shorter of these latter two interactions is shown explicitly in Fig. 2; it has a normalized $\mathrm{H} \cdots \mathrm{Br}$ distance of only 2.58 Å.

There are also several bromine-bromine contacts. The shortest of these, $\operatorname{Br} 1 \cdots \operatorname{Br} 3(x, y, z-1)=3.4752$ (5) and $\operatorname{Br} 2 \cdots \operatorname{Br} 3(-x,-y, 1-z)=3.5117(5) \AA$, involve the anion Br 3 and are approximately linear at the central bromine [C$\mathrm{Br} \cdots \mathrm{Br}=158.35$ (9) and $\left.168.36(9)^{\circ}\right]$. Such contacts are thought to be associated with a positive region of charge in the extension of the $\mathrm{C}-\mathrm{Br}$ vector beyond Br . Two further $\mathrm{Br} \cdots \mathrm{Br}$ contacts are longer than the double van der Waals radius of $3.7 \AA$ (Bondi, 1964), but may, nevertheless, be regarded as structurally significant; $\operatorname{Br} 1 \cdots \operatorname{Br} 2(-x,-y,-z)=3.9011(5) \AA$ and $\operatorname{Br} 1 \cdots \operatorname{Br} 1(1-x,-y,-z)=3.8311$ (7) A. The latter, with $\mathrm{C}-\mathrm{Br} \cdots \mathrm{Br}$ angles equal by symmetry at $119.39(9)^{\circ}$, is a

Received 4 April 2003
Accepted 7 April 2003
Online 16 April 2003

Figure 1
The formula unit of the title compound in the crystal. Ellipsoids are drawn at the 50% probability level and H -atom radii are arbitrary.

Figure 2
Packing diagram of one layer of the title compound (at $y=\frac{1}{2}$), projected along the b axis. Secondary interactions are indicated by dashed lines (thick, classical hydrogen bonds and short $\mathrm{Br} \cdots \mathrm{Br}$; thin, 'weak' hydrogen bonds and long $\mathrm{Br} \cdots \mathrm{Br}$).
typical 'type I' interaction as classified by Pedireddi et al. (1994); in contrast to type II interactions (one 90° and one 180° angle), these are not thought to represent significant electrostatic interactions, but nevertheless are observed so frequently that some stabilizing effect might be presumed. The former has angles of 101.84 (9) and $136.03(9)^{\circ}$ and lies between types I and II.

The packing of the previous modification, also involving layers in crystallographic mirror planes, differed from the pattern described here in one important respect; the higher symmetry of the layers ($4 / \mathrm{mmm}$), in which the $\mathrm{N}-\mathrm{H}$ bonds of neighbouring rings are exactly antiparallel and 'share' two bromides via three-centre hydrogen bonds, thus forming units $\mathrm{N}^{+}-\mathrm{H}\left(\cdots \mathrm{Br}^{-} \cdots\right)_{2} \mathrm{H}-\mathrm{N}^{+}$. In Fig. 2, the formal conversion of the lower to the higher symmetry form can be seen in terms of the $R_{4}^{2}(10)$ ring centred at $x=1, z=\frac{1}{2}$; the pyridine rings to the
upper right and lower left of the cell edge should both be rotated anticlockwise.

The distance between the layers is $b / 2=3.419 \AA$, cf. $3.442 \AA$ in the previous modification; however, the latter has a significantly higher density, 2.631 versus $2.553 \mathrm{Mg} \mathrm{m}^{-3}$, suggesting more efficient packing in its layers. One surmises that the energy balance between the two forms would be very delicate.

Experimental

During a study of tribromoacetates, small crystals of the title compound were obtained on attempting to crystallize 3,5-dibromopyridinium tribromoacetate from dichloromethane/diethyl ether. Presumably these arose from small quantities of bromine or bromide as a decomposition product.

Crystal data

$\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Br}_{2} \mathrm{~N}^{+} \cdot \mathrm{Br}^{-}$
$M_{r}=317.82$
Monoclinic, $C 2 / m$
$a=11.6270$ (8) \AA
$b=6.8372$ (4) \AA
$c=10.4344$ (6) \AA
$\beta=94.574$ (4) ${ }^{\circ}$
$V=826.85(9) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=2.553 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 4877 \\
& \quad \text { reflections } \\
& \theta=3.5-30.5^{\circ} \\
& \mu=14.55 \mathrm{~mm}^{-1} \\
& T=133(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.25 \times 0.13 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD

diffractometer
ω and φ scans
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
$T_{\text {min }}=0.253, T_{\text {max }}=0.462$
7962 measured reflections

> 1308 independent reflections 1138 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.030$
> $\theta_{\max }=30.0^{\circ}$
> $h=-16 \rightarrow 16$
> $k=-9 \rightarrow 9$
> $l=-14 \rightarrow 14$

Refinement

Refinement on F^{2}
H atoms treated by a mixture of independent and constrained refinement
$w R\left(F^{2}\right)=0.052$
$S=1.06$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0338 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\max }=0.55 \mathrm{e}^{2} \AA^{-3}$
$\Delta \rho_{\min }=-0.78 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\circ}\right)$.

$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$124.4(3)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	119.1 (3)
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.7(3)$		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 01 \cdots \mathrm{Br} 3$	$0.912(19)$	$2.29(2)$	$3.140(2)$	$156(4)$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Br}^{\mathrm{i}}$	0.95	3.08	$4.006(3)$	166
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Br}^{\mathrm{ii}}$	0.95	2.71	$3.641(3)$	168

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $1-x,-y, 1-z$.

The acidic H atom was refined freely but with an $\mathrm{N}-\mathrm{H}$ bond length restraint. Other H atoms were included using a riding model, with fixed $\mathrm{C}-\mathrm{H}$ bond lengths of $0.95 \AA . U_{\text {iso }}(\mathrm{H})$ values were fixed at 1.2 times $U_{\text {eq }}$ of the parent atom.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. VL was supported by the Erasmus scheme. We thank Mr A. Weinkauf for technical assistance.

References

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Bruker (1998). SMART (Version 5.0), SAINT (Version 4.0) and SADABS (Version 2.0). Bruker AXS Inc., Madison, Wisconsin, USA.
Freytag, M. \& Jones, P. G. (2001). Z. Naturforsch. Teil B, 56, 889-869.
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. \& Desiraju,
G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353-2360.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

